赵勤-亚博888

亚博888

赵勤

更新时间:2023-09-21

一、个人基本情况

姓  名:赵勤

性  别:男

学  位:博士                                         

职  称:副教授

所在系:数学系

电子邮件:

二、教育背景与工作经历

工作经历

2019/07 ~ 至今      武汉理工大学

2016/06 ~ 2019/06   博士后,上海交通大学

教育背景

2011/09 ~ 2016/06   博士,复旦大学

2007/09 ~ 2011/06   本科,兰州大学

三、研究方向

非线性偏微分方程理论及其应用

四、教学研究

近年来主要承担本科生课程《应用数学分析》、《高等数学》、《数理方程》、《线性代数》和《高等代数与解析几何》等

五、科学研究

主要从事非线性双曲守恒律和流动稳定性方面的相关研究工作,目前主持的国家自然科学基金项目:

(1)国家自然科学基金青年科学基金:定常燃烧反应欧拉方程组波结构的理论研究(项目号:12101471),2022.01-2024.12

已发表的学术论文:

[1]yongqian zhang, qin zhao, global solution to nonlinear dirac equation for gross-neveu model in 1 1 dimensions, nonlinear analysis, 118 (2015), 82-96.

[2]wei xiang, yongqian zhang, qin zhao, two-dimensional steady supersonic exothermically reacting euler flows with strong contact discontinuity over a lipschitz wall,  interfaces free bound., 20 (2018), no. 3, 437–481.

[3]yongqian zhang, qin zhao, large time behavior of solutions to nonlinear dirac equation in 1 1 dimensions, acta math. sci. ser. b (engl. ed.),  39 (2019), no. 2, 597–606.

[4]yongqian zhang, qin zhao, initial boundary value problem for nonlinear dirac equation of gross-neveu type in 1 1 dimensions. j. math. anal. appl., 477 (2019), no. 1, 708–733.

[5]beixiang fang, ya-guang wang, qin zhao, on multi-dimensional linear stability of planar shock waves for chaplygin gases, appl. math. lett., 102 (2020), 106085, 7pp.

[6]hairong yuan, qin zhao, stabilization effect of frictions for transonic shocks in steady compressible euler flows passing three-dimensional ducts, acta math. sci. ser. b (engl. ed.),  40 (2020), no. 2, 470–502.

[7]jie kuang, qin zhao, global existence and stability of shock front solution to 1-d piston problem for exothermically reacting euler equations, j. math. fluid mech.,  22 (2020), no. 2, art. 22, 42 pp.

[8]aifang qu, hairong yuan, qin zhao, hypersonic limit of two-dimensional steady compressible euler flows passing a straight wedge, z angew math mech.2020, 100, e201800225.  

[9]aifang qu, hairong yuan, qin zhao, high mach number limit of one-dimensional piston problem for non-isentropic compressible euler equations: polytropic gas, j. math. phys.,   011507, 14 pp.

[10]hairong yuan, qin zhao, subsonic flows passing a duct for three-dimensional steady compressible euler system with friction (in chinese), sci. sin. math., 51(2021), 1-23.

[11]beixiang fang, qin zhao, uniqueness of steady 1-d shock solutions in a finite nozzle via vanishing viscosity arguments. commun. pure appl. anal. 20 (2021), no. 7-8, 2535–2553.

[12]beixiang fang, piye sun, qin zhao, transonic shocks for 2d steady exothermically reacting euler flows in a finite nozzle, j. math. phys., 64(2023), no.8, 081507, 34 pp.

[13]fang, beixiang fang, xin gao, qin zhao, asymptotic analysis of transonic shocks in divergent nozzles with respect to the expanding angle. j. differential equations, 379(2024), 290314.




网站地图